
February, 2006

Advisor Answers

Importing Access Data

VFP 9/8/7

Q: How do you import tables from Access? Can you?

A: Last May, I showed how to create an Access database matching an

existing VFP database. You want to do the reverse—create a VFP
database to match an existing Access database. If all you want is the

tables and the data, this is actually quite a lot simpler than going from
VFP to Access. If you want to exercise more control over the process

(such as omitting some tables or fields, or including existing indexes),
you have to do a little more work.

Let's start with the simple approach. Using SQL Pass-through (SPT),
VFP's technique for talking directly to a server, you can connect to the

Access database, get a list of its tables, and then extract the data in
them.

Step 1 is connecting to the database. Since I want to do the whole

task in code, I'll use SQLStringConnect and build the connection string
I need in the code. The connection string for SPT with an Access

database looks like this (the line break here is just to fit on the page):

"Driver={Microsoft Access Driver (*.mdb)};Dbq=MyData.MDB;Uid=Admin;Pwd=;"

Substitute the name and path of your Access database for
"MyData.MDB" and, if necessary, specify a different user id and

password.

Once you're connected, VFP's SQLTables() function lets you retrieve a

list of tables. Access databases actually can include not only tables,
but views. In addition, every Access database includes a number of

system tables. For our purposes, just the tables are needed; to limit
SQLTables() to real tables, pass "Table" for the optional second

parameter. The function puts the list into a cursor. If you don't specify

otherwise, the cursor is called SQLResult. (In fact, that's the default
name for any cursor created via SPT.) You can specify the cursor name

by passing it as the third parameter.

Once you have the list, you just need to go through the cursor, read

the data from each table and save it to a VFP table. There's one

complication. Access allows tables with spaces in the name, but VFP

can't directly address them. To work around this issue, though, you
can surround the table name with square brackets.

Here's the complete program to create a copy of an Access database
via SPT:

LOCAL cMDBFile, cDBName, cConnString, nHandle
LOCAL cTable, cQuery

cMDBFile = GETFILE("MDB","Access database", "Import")
IF EMPTY(cMDBFile)
 RETURN
ENDIF

* Create a VFP database
cDBName = JUSTSTEM(cMDBFile)
CREATE DATABASE (cDBName)

cConnString = ;
 "Driver={Microsoft Access Driver (*.mdb)}" + ;
 "Dbq=&cMDBFile;Uid=Admin;Pwd=;"
nHandle = SQLSTRINGCONNECT(cConnString)

SQLTABLES(nHandle, "Table", "TableList")

SCAN
 cTable = ALLTRIM(TableList.Table_Name)
 cQuery = "SELECT * FROM [" + cTable + "]"
 IF SQLEXEC(nHandle, cQuery, "CurTable") > -1
 * Create a real table
 COPY TO (cTable) DATABASE (cDBName)
 ELSE
 MESSAGEBOX("Problem with " + cTable)
 ENDIF
ENDSCAN

USE IN CurTable
USE IN TableList
SQLDISCONNECT(nHandle)

RETURN

For more control over the process or to recreate only the structure of
the Access database, use ADOX (ADO Extensions). Start with the

ADOX Catalog object, which provides a Tables collection. Each Table
object has Columns and Indexes collections.

Once you create a table and its indexes, you can use ADO plus a
CursorAdapter to copy the data from the Access table to the new

table.

To open the Access database, use an ADO Connection object; once it's

open, an ADOX Catalog object can access it.

#DEFINE JetProvider "Microsoft.Jet.OLEDB.4.0"

oConn = CREATEOBJECT("ADODB.Connection")

cConnString = "Provider="+JetProvider+ ;
 ";Jet OLEDB:Engine Type=5;Data Source=&cMDBFile"
oConn.ConnectionString = cConnString
oConn.Open()

oCatalog = CREATEOBJECT("ADOX.Catalog")
oCatalog.ActiveConnection = oConn

Like SQLTables(), the Catalog object shows you all types of tables in

the database, so you need to limit the code to tables with the Type
property set to "TABLE".

One of the easiest ways to create a table in VFP is to put the structure

of the table into an array and use CREATE TABLE FROM ARRAY. The
loop here populates the array by reading properties of the Column

object. Column has explicit properties for the main characteristics of
the field, such as Name, Type and DefinedSize. Additional

characteristics are stored in a Properties collection of the Column
object. This code extracts only the Nullable property from the

collection, but additional information is available as well.

Access allows some characters in field names that VFP chokes on, so

the code uses CHRTRAN() to get rid of those (including spaces). ADOX
stores Type as a number. I wrote a function, ConvertToVFPType (not

shown here), to convert from an ADO data type to the single character
VFP expects.

* Build a list of columns
DIMENSION aFieldList[oTable.Columns.Count, 5]
nColumn = 1
FOR EACH oColumn IN oTable.Columns
 aFieldList[nColumn, 1] = ;
 CHRTRAN(oColumn.Name,"?!@#$%^&* ","")
 aFieldList[nColumn, 2] = ;
 ConvertToVFPType(oColumn.Type)
 aFieldList[nColumn, 3] = ;
 MIN(oColumn.DefinedSize, 254)
 aFieldList[nColumn, 4] = oColumn.Precision
 IF oColumn.DefinedSize = 0 AND ;
 oColumn.Precision <> 0
 aFieldList[nColumn, 3] = oColumn.Precision+2
 ENDIF

 * Must deal with nulls
 aFieldList[nColumn, 5] = ;
 oColumn.Properties("Nullable").Value

 nColumn = nColumn + 1
ENDFOR

CREATE TABLE (cTable) FROM ARRAY aFieldList

To add indexes to the table, loop through the Indexes collection. One
complication here is that Access allows indexes to be created based on

multiple fields without actually providing the expression to combine
them. (For example, in the Northwind database's Order Details table,

there's an index based on OrderID and ProductID, both integer fields.)
In converting such indexes, we need to make sure we don't try adding

integers or dates. This code takes a brute force approach, using
PADL(<field>, 20) for each field in the expression.

* Now get the indexes
FOR EACH oIndex IN oTable.Indexes
 cTag = LEFT(oIndex.Name, 10)
 cKey = ""
 lCombined = oIndex.Columns.Count > 1
 FOR EACH oColumn IN oIndex.Columns
 IF lCombined AND ;
 ConvertToVFPType(oTable.Columns(;
 oColumn.Name).Type) <> "C"
 cKey = cKey + "+ PADL(" + ;
 oColumn.Name + ", 20)"
 ELSE
 cKey = cKey + "+" + oColumn.Name
 ENDIF
 ENDFOR
 cKey = SUBSTR(cKey, 2)
 lPrimary = oIndex.PrimaryKey
 lCandidate = oIndex.Unique

 DO CASE
 CASE lPrimary
 ALTER TABLE (cTable) ADD PRIMARY KEY &cKey ;
 TAG (cTag)
 CASE lCandidate
 ALTER TABLE (cTable) ADD UNIQUE &cKey ;
 TAG (cTag)
 OTHERWISE
 INDEX on &cKey TAG (cTag)
 ENDCASE
ENDFOR

The last step is copying the data. Using a CursorAdapter and an ADO

RecordSet created and linked earlier in the program, a cursor is filled
with the data, which is then copied to the new table.

* Now get the data
oCA.SelectCmd = "SELECT * FROM [" + cTable + "]"
oCA.CursorFill()

SELECT 0
USE (cTable) ALIAS __NewTable
APPEND FROM DBF("CurTable")
USE IN __NewTable

While this approach requires more code than SPT, it also gives you
more opportunities to intervene and change the results. One downside

of this version is that it creates each table with the fields in
alphabetical order rather than in their original order. I haven't been

able to find any properties in the ADOX model to work around this.

The ADOX version requires an OLE DB provider for the Jet engine,

while the SPT version uses an ODBC driver. Both versions are included
on this month's Professional Resource CD and subscriber downloads.

–Tamar

